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Abstract

Dynamics in locomotion is highly useful, as can be seen in animals and is be-
coming apparent in robots. For instance, chimpanzees are dynamic climbers that can
reach virtually any part of a tree and even move to neighboring trees, while sloths are
quasistatic climbers confined only to a few branches. Although dynamic maneuvers
are undoubtedly beneficial, only a few engineered systems use them, most of which
locomote horizontally. This is because the design and control are often extremely
complicated.

This thesis explores a family of dynamic climbing robots which extend robotic
dynamic legged locomotion from horizontal motions such as walking, hopping, and
running, to vertical motions such as leaping maneuvers. The motion of these dy-
namic robots resembles the motion of an athlete jumping and climbing inside a
chute. Whereas this environment might be an unnavigable obstacle for a slow, qua-
sistatic climber, it is an invaluable source of reaction forces for a dynamic climber.
The mechanisms described here achieve dynamic, vertical motions while retaining
simplicity in design and control.

The first mechanism called DSAC, for Dynamic Single Actuated Climber, com-
prises only two links connected by a single oscillating actuator. This simple, open-
loop oscillation, propels the robot stably between two vertical walls. By rotating the
axis of revolution of the single actuator by 90 degrees, we also developed a sim-
pler robot that can be easily miniaturized and can be used to climb inside tubes.
The DTAR, for Dynamic Tube Ascending Robot, uses a single continuously rotat-
ing motor, unlike the oscillating DSAC motor. This continuous rotation even further
simplifies and enables the miniaturization of the robot to enable robust climbing
inside small tubes. The last mechanism explored in this thesis is the ParkourBot,
which sacrifices some of the simplicity shown in the first two mechanism in favor
of efficiency and more versatile climbing. This mechanism comprises two efficient
springy legs connected to a body.

We use this family of dynamic climbers to explore a minimalist approach to lo-
comotion. We first analyze the open-loop stability characteristics of all three mech-
anisms. We show how an open-loop, sensorless control, such as the fixed oscillation
of the DSAC’s leg can converge to a stable orbit. We also show that a change in
the mechanism’s parameters not only changes the stability of the system but also
changes the climbing pattern from a symmetric climb to a limping, non-symmetric
climb. Corresponding analyses are presented for the DTAR and ParkourBot mech-
anisms. We finally show how the open-loop behavior can be used to traverse more
complex terrains by incrementally adding feedback. We are able to achieve climbing
inside a chute with wall width changes without the need for precise and fast sensing
and control.
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Chapter 1

Introduction

Perfection is achieved, not when there is nothing more to add, but when there is
nothing left to take away.

— Antoine de Saint-Exupéry

Everything should be made as simple as possible, but not simpler.

— Albert Einstein

Locomotion - the act of moving from place to place, is one of the most basic and important
aspects in robotics. This thesis shows how minimalism can be used to design locomoting robots,
specifically those that can climb up vertical channels. Minimalism is the attempt to find the
simplest mechanism that is capable of performing a given task. Here minimalism is implemented
as using fewer motors to achieve stable locomotion without the need of sensing or active control.
Similar to the progress in horizontal walking biped robots from sluggish motions and many
motors to highly dynamic and minimal control, we set out to explore minimalism in climbing
robots. Therefore, the purpose of this thesis is to explore the use of dynamic motions to design
minimalistic climbing mechanisms. We present a family of dynamic climbing robots which are

inspired by this approach.



1.1 Bipedal locomotion

To give context to climbing locomotion, we summarize the history of bipedal locomotion. Bipedal
robotic locomotion has evolved tremendously during the past two decades. However, many of
them are still cumbersome, heavy, sluggish and inefficient. Controlling walking robots first
started with static walking approaches where the joint angles were carefully programmed to
keep the projection of the center of mass (CoM) on the ground inside the foot support area (Kato
et al., 1974). This approach suffered from slow speeds and inability to traverse all but flat sur-
faces. Trying to solve this problem, the zero moment point (ZMP) approach was introduced
(Takanishi et al., 1982; Vukobratovic and Borovac, 2004; Vukobratovic and Juricic, 1968). This
approach relaxes the constraint of the CoM to be inside the support area by constraining the
ZMP, which is the point where there is no moment related to the dynamic reaction force, to be
in the support area. A variation of this kind of control is used in the famous Honda Asimo hu-
manoid (Figure 1.1). While this control enables more dynamic and fast walking, the control is
based on precise joint-angle control. The main consequence of such a control is that it requires
actuators with high precision and frequency response. This results in a heavy mechanism with

large motors and sluggish and unnatural movements.

Two minimalistic approaches have followed to allow more dynamic walking and running.
These approaches are Raibert’s dynamic robots (Raibert, 1986) seen in Figure 1.2 and the pas-
sive dynamic walkers (McGeer, 1990b; Collins et al., 2001b) seen in Figure 1.3. Both of these
approaches use dynamic motions and relax the need for precise joint angle control. In fact the
passive dynamic walking need no control at all! The mechanisms built in Raibert’s lab use sim-
ple control to stabilize the running direction and speed of single legged hopping robots. The
passive dynamic walkers show how a well designed robot on a shallow slope can walk stably in
a very human like behavior without the need of any motors. Gravity behaves as the motor for

these kinds of machines.



Figure 1.1: The Honda Asimo robot.

Figure 1.2: One of the hopping robots from Raibert’s lab.



Figure 1.3: Strobe photo of a McGeer-like mechanism walking down a shallow ramp in Cornell’s
Biorobotics and Locomotion Lab. Reprinted with permission from Andy Ruina. Photo credit to

Rudra Pratap.

1.2 Climbing locomotion

We try to take the same approach of using dynamic motions to the climbing task. Climbing is
not a trivial task because the mechanism is moving against gravity, hence the mechanism must
consist of at least one motor (or another form of energy). The question we asked ourselves is, is

it possible to design a mechanism that climbs with a single motor?

Not unlike today’s bipedal robot, most of the climbing robots use heavy design and slow
motions. In many cases, the quasistatic and ZMP-like motion of the climbing robots not only
result in sluggish motions but also in many motors. We next show how the use of dynamic

motions can be beneficial in decreasing the number of necessary motions.
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1.3 Motivation: Why use dynamics?

Humans and even more so animals use dynamic motions in everyday tasks. Such motions are
running, jumping over obstacles, throwing objects, and climbing. Other than speed, what are
the advantages of dynamic motions over quasistatic motions? There are two. First, being able to
overcome obstacles which are impassible while moving slowly. As an example, say a human rock
climber tries to hold onto a distant handhold but cannot reach it. One strategy, albeit dangerous,
is to leap upwards to try to grab onto the handhold. This is one way to imagine how a dynamic,
leaping movement can help increase reachability. Figure 1.4 depicts another example of a human

using dynamic motions to climb inside a chute.

The second reason for using dynamic motions is illustrated by comparing two multi-linked
systems. These systems have rigid links, connected serially by revolute actuators. We ask “how
many links and actuators are needed to climb up a simple channel as shown in Figure 1.57”” The
four link mechanism (1.5(a)) must brace itself with the bottom two links while moving the top
two links to reposition its footholds. While trying to brace the top two links, the bottom ones must
change configuration, resulting in an eminent slip. On the other hand, the five link mechanism
(1.5(b)) is able to brace itself with its upper links while enabling the bottom set to reposition
themselves. Figure 1.5(c) compares this five link mechanism (left) with our two link dynamic

climber. The mechanism on the left can only move quasistatically, while the one on the right
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Figure 1.4: Human climbing between two vertical walls.
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Figure 1.5: Quasistatic multi-linked mechanism climbing inside a chute. (a) An unsuccessful
climb of a four linked mechanism. (b) A successful climb of a five linked mechanism.(c) Com-

paring the five link snake (left) to the two link dynamic climber we present in this thesis.

can employ dynamic strategies such as leaping maneuvers. This example does not prove, but
exemplifies how the use of dynamic motions can sometimes decrease the number of necessary

motors.



Figure 1.6: The dynamic climbing robots. DSAC (left), DTAR (middle), and ParkourBot (right).

Standard AA battery placed in the middle for reference.

1.4 Systems Description

This thesis describes a family of dynamic climbing mechanisms, shown in Figure 1.6. They
all use dynamic motions to climb up vertical walls with an open-loop, self stabilizing motion.
The first is the DSAC, for Dynamic Single Actuated Climber. The DSAC comprises a single
actuated joint connecting two links. By using dynamic motions this mechanism climbs up a chute
between two parallel walls. The second is a miniaturized extension to the DSAC called DTAR,
for Dynamic Tube Ascending Robot. The third dynamic climbing robot is the ParkourBot. This
mechanism is more complex, however it is more efficient and can be controlled in a more precise
fashion.

Table 1.1 summarizes the three systems analyzed in this thesis. Common to these three sys-
tems is dynamic motions. Moreover, these three systems are inherently stable without feedback

control.



Table 1.1: Systems description

Name Description Section Image
DSAC comprises a single oscillating motor con- | Open-loop: Chap. 3 \J
necting two links. Closed-loop: Sec. 6.3
DTAR a tube climbing robot similar to the | Open-loop: Chap. 4 éj!
DSAC. Comprises only a rigid body, two j
O-rings and a motor rotating an eccentric
mass.

ParkourBot || comprises two springy legs connected to | Open-loop: Chap. 5

a body. During flight, the robot stores
elastic energy in its springy legs and au-
tomatically releases the energy to “kick

off” the wall during touch down.

Closed-loop: Sec. 6.4
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Figure 1.7: Schematics of the two link mechanism in flight between two parallel walls.

1.4.1 DSAC

The DSAC mechanism is planar and consists of two links; the first is the main body and the
second is the leg. The leg, which contacts the wall, is connected to the main body through
an actuated revolute joint (Figure 1.7). We show that even when the motor outputs a simple
symmetric oscillation, such as a sinusoid, the mechanism, under some choices of parameters,
will climb stably. Variation of the mechanism’s parameters alters the behavior of the mechanism
significantly. We have identified two “typical” climbing motions: single contact and double
contact. The former only contacts the distal part of the leg, and the latter also contacts the

proximal of the leg (see Figures 1.8 and 1.9, respectively).

Single contact climbing is advantageous in that it can climb wider gaps. However, in general,
the frequencies required from the motor are larger than for double contact climbing. On the
other hand, double contact climbing is restricted to narrower gaps. Double contact climbing

is less dynamic since most of the climbing motion follows from rotations around the points of
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Figure 1.8: Example of a single contact climbing motion of the DSAC. Only the distal end of
the leg hits the walls. This climbing gait can climb wide gaps, but in general the motor has to

oscillate quickly.

contact and not while flying between the walls. We will mostly focus on the more dynamic single

contact climbing motion.

To help understand how the DSAC climbs, it is helpful to decompose the motion from one
wall to the other into three phases; flight, impact and stance (see Figure 1.8(a,b,c), respectively).
The flight phase is just a simple continuous motion without any external forces applied to the
body, other than gravity. The impact phase can be regarded as an instantaneous phase where the
configuration does not change but the velocities do change instantaneously. The stance phase is
when the pendulum-like body swings toward the counter wall and the leg is in contact with the
wall.

It is valuable to examine each phase in order to understand how the mechanism is capable of
climbing stably without any sort of control loop. The analysis section will show that during the
impact phase, the leg loses most of its angular velocity, which acts as a reset function to reduce

the accumulated perturbation after each impact. The stance phase has two “tasks”. First, the body
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Figure 1.9: Example of a double contact climbing motion. This is the less dynamic gait where
both the distal and the proximal ends of the leg hit the walls. In order to climb the leg has to be

similar in length to the wall width. This is a very robust climbing gait and requires lower motor

speeds than the single point contact climb.
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swings toward the counter wall which makes the leg “stick™ to the wall. Second, while swinging
the body, the mechanism absorbs kinetic energy which gives it the kick during the transition to
flight phase. The flight phase is when the mechanism gains height and changes configuration
that enable a continuous climbing motion. This motion is further explained more formally in the
next chapters. One might imagine this motion as the human from the cartoon in Figure 1.4. The
kickoff as in Figure 1.4(c) is equivalent to the stance phase. This phase imparts energy into the
system until it transitions to flight phase. Figures 1.4(d,e) resemble the flight and impact phases,

respectively.

14.2 DTAR

The DTAR, for Dynamic Tube Ascending Robot, is an extension of the DSAC (see Figure 1.10).
Instead of oscillating the leg of the DSAC around an axis perpendicular to the direction of climb-
ing, the DTAR continuously rotates around the axis in the climbing direction. This resolves the
problem of using an oscillatory motor and enables miniaturization of the robot. To implement
this motion we use a simple “pager motor” which continuously rotates an eccentric mass. This
eccentric mass is equivalent to the leg of the DSAC. In fact, by looking at a projection of the mass
on a plane, this mass follows a sinusoid similar to the DSAC leg angle. The DTAR prototype
comprises a small rigid body (approximately 1cm by lcm by Icm), two O-rings and a motor
rotating the eccentric mass. The mass ratio and geometry of this prototype make the mechanism
climb in a gait similar to the one shown in Figure 1.9. This “double contact climbing” is very
robust. As will be shown in Chapter 4, we analyze two important conditions that must hold for
stable climbing and determine the mechanism’s parameters that ensure a stable gait sequence.

We further approximate the climbing rate of DTAR.
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Figure 1.10: Cad model of the DTAR mechanism. The DTAR prototype comprises a small rigid

body (approximately Icm by lcm by 1cm), two O-rings and a motor rotating the eccentric mass.

1.4.3 ParkourBot

The ParkourBot, shown in Figure 1.11 is an efficient, two-legged, dynamic climbing robot. The
robot comprises two springy legs connected to a body similar to the leg design of the BowLeg
hopping robot (Brown and Zeglin, 1998; Zeglin and Brown, 1998). Leg angle and spring tension
are independently controlled. The robot climbs between two parallel walls by leaping from one
wall to the other. During flight, the robot stores elastic energy in its springy legs and automat-
ically releases the energy to “kick off” the wall during touch down. Chapter 5 elaborates on
the mechanical design of the ParkourBot. We use a simplified spring-loaded inverted pendulum
(SLIP) model to simulate the ParkourBot motion and stability. Finally, we detail experimental

results, from open-loop climbing motions to closed-loop stabilization of climbing height.
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Figure 1.11: The ParkourBot overlayed with the simplified SLIP model climbing motion.
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1.5 Thesis outline

The outline of this document is as follows. Chapter 1.7 describes related work, including climb-
ing mechanisms, walking machines, hopping robots, planning for dynamic systems, and analysis
of dynamic systems. Chapter 2 summarizes the relevant mathematical preliminaries used in
succeeding chapters.

This thesis includes two parts. Part I analyzes the open-loop characteristics of the three
mechanisms and Part II describes an algorithm to enable climbing in a more complex terrain

with minimal addition of sensing.

1.5.1 Part I: Open-loop climbing

The DSAC (Chapter 3), DTAR (Chapter 4) and the ParkourBot (Chapter 5) all exhibit stable
climbing motions without need of external sensing and feedback. Part I explores these open-loop
mechanisms. Simple models of each mechanism will be presented, together with derivations of
the equations of motion. This will be followed by open-loop stability which includes the local
stability analysis and the basin of attraction approximation. The DTAR analysis explores the
range of parameters that will allow stable climbing inside tubes. Proof-of-concept experiments
are given for all three mechanisms.

The DSAC and ParkourBot exhibit interesting nonlinear phenomena, including period dou-
bling bifurcation and quasi-periodic motions which will be investigated in depth. We further
show how in some cases a non-symmetric “limping” period-2 motion can be more efficient and

even more robust than the symmetric motion.

1.5.2 Part II: Closed-loop climbing

The knowledge from the open-loop analysis is used to address more complex environments with

just a small addition of feedback and sensory information. Chapter 6 in Part II presents an
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algorithm that uses basins of attraction approximation to find a graph of possible transitions
between controls and terrains. The final goal is to climb between walls of changing width using

this algorithm.

1.6 Publication Note

Analysis and experiments of the DSAC mechanism was first published in (Degani et al., 2007).
Much of Chapter 3 has appeared in (Degani et al., 2010a). The DTAR mechanism was first
analyzed in a video submission (Degani et al., 2010b). Chapter 4 will appear in (Degani et al.,
2010d), and Chapter 5 which was submitted to ICRA 2011 is joint work with Ben Brown, Kevin

Lynch and Siyuan Feng.

1.7 Related Research

This mechanism is unique but its underlying mechanisms draw from many areas including min-
imalist manipulation, walking and hopping robots, open-loop controlled robots and planning for

dynamical systems. These are briefly summarized in this chapter.

1.7.1 Minimalism

In the context of this work, the minimalist approach is the attempt to find the simplest mechanism
that is capable of performing a given task. Simplicity of a system can be defined in different ways.
In general one tries to minimize the amount of sensory input, actuation or computation. Previous
minimalism works have dealt with manipulation and locomotion. Canny and Goldberg (1995)
examined how a simple system comprising of a parallel-jaw gripper and an optical beam sensor,
together with geometric planning and sensing algorithms is capable of recognizing and orienting
a broad class of industrial parts. Erdmann and Mason built a tray-tilting system which can orient

a part in a random initial configuration in the tray without sensing (Erdmann and Mason, 1988).
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Lynch and Mason (1999) planned and controlled dynamic nonprehensile manipulation. They
used a one degree of freedom arm to perform dynamic tasks such as snatching an object from a
table, rolling the object on the arm, and throwing and catching. A good example of minimalism
in the locomotion task is the passive dynamic walkers described below (McGeer, 1990a,b; Garcia
et al., 1998).

The mechanisms described in this thesis extend the minimalism in locomotion from horizon-
tal motions to vertical, climbing motions. The mechanism can perform a climbing task, albeit a

simple one, without sensing and control, with a single actuator and a simple mechanical design.

1.7.2 Walking robots

McGeer, who initiated the work on passive dynamic walking (McGeer, 1990a,b) showed that a
properly designed walking machine can walk down a gentle slope without any active control or
energy input, other than potential energy from the slope. The mass and link length parameters
can be chosen so that the natural dynamics of the walker enters a stable limit cycle from a basin-
of-attraction of initial conditions. This principle has been used in the design of passive walkers
with counter-swinging arms (Collins et al., 2001a) and low-power walkers capable of walking
over flat ground (Collins et al., 2005). We use a similar tactic in our mechanism but instead of

using gravity as a “dumb’ actuator, we use a fixed symmetric oscillation.

1.7.3 Hopping robots

Dynamic climbing is in many senses similar to dynamically locomoting robots, in particular
hopping, passive dynamic walking, and running robots. The work of Raibert was particularly
influential, as it demonstrated that simple control laws could be used to stabilize hopping and
control the running speed and direction of 2D and 3D single-leg hoppers (Raibert and Brown,
1984; Raibert et al., 1984). The single-leg systems also serve as models for runners with multiple

legs (Raibert et al., 1986; Raibert, 1986). This work inspired detailed analysis of the nonlinear
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dynamics of a hopping robot (Vakakis et al., 1991; Koditschek and Biihler, 1991) and gymnastic
maneuvers in both simulation (Berkemeier and Fearing, 1998; Mombaur et al., 2005a) and exper-
iments (Hodgins and Raibert, 1990). To improve the energy efficiency of a hopping robot, Brown
and Zeglin introduced the BowLeg hopper, which can traverse a series of stepping stones (Brown
and Zeglin, 1998; Zeglin and Brown, 1998) using a highly efficient bow-like spring. The BowLeg

concept is the basis of our ParkourBot mechanism discussed in Chapters 5,6.

1.7.4 Simplified models

To facilitate analysis and control design of running and walking robots, it is convenient to de-
velop simplified models which nonetheless retain the essential character of the original physi-
cal system. Two examples are the spring-loaded inverted pendulum (SLIP) model of running
robots (Raibert, 1986; Blickhan, 1989; Blickhan and Full, 1993) and the “simplest walking
model” (Garcia et al., 1998). Such models can be used to extract important relationships be-
tween design and control parameters and performance. For example, Kuo used the simplest
walking model to demonstrate that applying an impulse at toe-off is a more energy-efficient way
to inject energy into a walker than applying a torque to the stance leg (Kuo, 2002). In the current
work, we develop a simplified model of the ParkourBot to analyze the open-loop dynamic sta-
bility in the chute-climbing task. The chute-climbing task may be viewed as “vertical running,”

in that our goal is to stabilize a desired limit cycle motion, as in running robots.

1.7.5 Climbing mechanisms
1.7.5.1 Quasistatic climbers

One aspect of this work that differs from the work described above is that locomotion occurs
largely in the vertical direction. While a number of robots have been designed for climbing
locomotion, they are mostly quasistatic. The Alicia3 robot climbs walls by using pneumatic

adhesion at one or more of three “cups” connected by two links (Longo and Muscato, 2006).
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(a) adhesive: (b) spines (c) brute force gripper (d) grasping/bracing
Suction and Magnets

Figure 1.12: A few examples of quasistatic climbing mechanisms divided into four groups de-
pending on the “attachment mechanism”. (a) Climbing mechanisms using suction or magnets
such as the Stickybot and Wallbot. (b) Mechanisms using spines such as Spinybotll and RiSE.
(c) Mechanism using brute force gripping. (d) Mechanisms bracing between opposing wall such

as the LEMUR robot.

The climbing robots of Shapiro et al. (2005) and Greenfield et al. (2005) climb by kinematic or
quasistatic bracing between opposing walls. Bretl (2006) and Bevly et al. (2000) both use foot-
hold based climbing strategies. Specifically, the four-limbed free-climbing LEMUR robot goes
up climbing walls by choosing a sequence of handholds/footholds, as well as motions to those
footholds, that keep the robot in static equilibrium at all times (Bretl, 2006). Gecko-inspired
directional dry adhesives allow Stickybot and Waalbot to climb vertical, smooth surfaces such
as glass (Kim et al., 2007; Murphy and Sitti, 2007), and the RiSE and SpinybotII robots climb
soft or rough walls using spined feet to catch on asperities in the wall (Autumn et al., 2005; Kim

et al., 2005). Figure 1.12 presents some of these quasistatic climbing mechanisms.
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1.7.5.2 Dynamic climbers

Unlike the quasistatic climber, only a few mechanisms have been proposed to achieve a vertical
climbing task using dynamic motions. Clark et al. (Clark et al., 2006, 2007) are in the process
of making the clawed RISE and SpinyBot robots more dynamic. They analyzed and designed a
cockroach inspired dynamic climbing robot which resembles a biologically based template for
dynamic vertical climbing. Their robot comprises a main rigid body with two linearly moving
hands with springs. A few differences set the DSAC apart from their dynamic climber. First,
their mechanism is more complex in design since it uses two motors, energy storing springs,
and a crank mechanism. Second, its climbing motion is similar to brachiating, flightless motion.
During all times one arm is fixed to the ground. Lastly, in contrast to the family of climbing robots
in this thesis, the cockroach inspired robot does not use reaction forces from walls but rather uses
spines to attach itself to a carpet covered wall. Similarly the ROCR robot, Jensen-Segal et al.
(2008) uses spines to attach to a carpeted wall and a single actuator rocking a pendulum to swing

up and climb.

1.7.5.3 Meso-scaled climbing robots

The DTAR mechanism analyzed in Chapter 4 is a meso-scaled tube climbing robot. Two classes
of meso-scaled tube climbing mechanisms in the order of 1-100mm have been previously pro-
posed: quasistatic and dynamic. Quasistatic climbers use slow motions to move from one stable
pose to the next such as the inchworm crawlers (e.g., Menciassi et al. (2006); Wang et al. (2008);
Kassim et al. (2006); Slatkin and Burdick (1995)). Dynamic mechanisms are mostly vibratory
system such as (Gmiterko et al., 2002; Mistinas and Spruogis, 2002; Salomon et al., 2008).
These systems use canted bristles to produce anisotropic friction. Energy transferred into the
system produces a motion in the direction of lowest friction. Power to these mechanisms is gen-
erated either by an external power source (e.g., Salomon et al. (2008)) or an internal vibrating

mechanism. This anisotropic friction produces the asymmetry which is crucial to locomote in a
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preferred direction. In the DTAR mechanism the asymmetry is not achieved through friction but
from locating the moving mass above the most distal contact point. Not relying on anisotropic
friction enables the operator to change the direction of motion, and to safely withdraw the mech-
anism when power is shut off. A mechanism shown in (Milano et al., 2009) is similar to the

DTAR in design but locomotes on flexible guide wires.

1.7.6 Open-loop control

The classic control method of locomoting robots is feedback control, where the loop is closed
in real-time using fast sensors and complicated feedback algorithms. For these reasons high
onboard computation is required and large amount sensory information. Ringrose (1997) and
Mombaur et al. (2005a) have developed open-loop controls for dynamic hoppers. Ringrose
(1997) used large circular feet to stabilize a one legged hopper. Mombaur and colleagues (Mom-
baur et al., 2005a,b) showed an approach which is similar to our work. In their work one- and
two-legged robots exhibit self-stabilizing running motions without closed-loop feedback. Two
optimization loops are used: an outer loop for finding stable motions by changing robot model
parameters, such as length and masses, and an inner loop which searches for an optimal con-
trol by minimizing the control inputs under the robot constraints. We intend to adopt similar

optimization techniques to find an optimal design and control of the DSAC for fast climbing.

Seyfarth, Geyer and Herr show how in bipedal running, an open-loop strategy of retracting
the swing leg between the apex of flight phase and before it impacts the ground not only allows
the foot velocity to better match the ground before impact, but also tends to stabilize the running
speeds (Seyfarth et al., 2003). In many ways this is similar to the approach of open-loop vertical
juggling where negative acceleration of the batter at the nominal impact time tends to stabilize

the bouncing height of the ball (Schaal and Atkeson, 1993).
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1.7.7 Planning for dynamic systems

The broader goal of this thesis, other than investigating the open-loop, simple, climbing mecha-
nisms, is to use minimal information to traverse harder terrain. This requires some control and
planning. Similar to the control of a hopping robot, or in our case a climbing robot, several
researchers used simple planning and control to perform juggling. As examples, Aboaf et al.
(1989) used learning control, Lynch and Black (2001) used control based on gradient descent
about a nominal batting trajectory, Ronsse et al. (2006) used control with minimum feedback
(impact time only), and Biihler and Koditschek (1990), Rizzi and Koditschek (1992) introduced

the “mirror law” control to juggle one or two objects in 2D and 3D.

Chapter 6 discusses the use of the open-loop stable climbing as primitives to traverse be-
tween more complex terrain. Each one of these open-loop climbing motions can be thought
as a funnel converging initial state condition toward the stable orbital attractor. Mason (1985)
used the term funnel as an analogy for eliminating uncertainty in manipulation by using purely
mechanical means without the needs of sensors. Lozano-Perez et al. (1984) introduced the no-
tion of pre-image backchaining for fine manipulation. They partitioned the state space into cells
with different local controllers which when deployed correctly the goal can be backchained into
a large set of initial conditions. These works focused on quasistatic problems with Coulomb
reaction forces restricted to piecewise constant-velocity control actions. Burridge et al. (1999)
verified theoretically the validity of the backchaining approach to non constant control policies on
Newtonian dynamics models. Weingarten et al. later used sequential composition for switching
between control policies for the Rhex (Weingarten et al., 2004) legged system. Recent advance-
ments in numerical approximation of these funnels, which are in essence the basin of attraction
or the Lyapunov function of a system, led to new and efficient algorithms in planning for nonlin-
ear systems (Tedrake et al., 2010). Recently Gregg et al. (2010) used geometric reduction-based
controls to find a set of asymptotically stable “primitives” for a 3-D bipedal robot, each corre-

sponding to walking along a nominal arc of constant curvature for a fixed number of steps. They

22



then composed these primitives (or funnels) in a controlled manner to produce a stable walking
path. Unlike these works where only a controller changes, our approach will also include terrain
change as a distinct “funnel”. This enables the machine to traverse varying terrain with a simple

global planner.
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Chapter 2

Background and Preliminaries

This chapter provides some background and preliminaries which will help to understand the
following chapters. While it covers a wide array of topics this chapter is not intended to be
a comprehensive explanation of all the concepts used in this thesis. The chapter begins with
the general formulation of the equations of motion of an articulated body together with added
external forces. Nondimensionalizing equations of motion will finish this part of the chapter.
Nonlinear dynamical systems definition and analysis methods conclude the chapter, including

orbital stability, Poincaré maps, and bifurcations.

2.1 General Equations of Motion

2.1.1 Lagrangian formulation of equations of motion

The equations of motion differentially connect the input torques YT and the resulting motion of

the mechanism in state space. There are many ways to generate dynamic equations of motion of

a mechanism. In this thesis, the Lagrangian analysis is used to derive the equations of motion.
We use the classical definition of generalized coordinates, ¢ = (q1,...,q,) € @, of the

mechanism as a minimal set of n independent coordinates which specifies the posture of the
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robot, where n is the number of degrees of freedom of the mechanism. This generalized coor-
dinate vector contains joint angles and the cartesian location of one reference point on the robot
relative to an inertial frame. The velocity vector ¢ = (¢1, . .., d,) € T, comprises both angular
and linear velocities. The entire state, including configuration and velocities, is z = (q,¢) € TQ.

In order to derive the equations of motion, the Lagrangian L : T'Q) — R is defined for a

mechanical system as the difference between the kinetic and potential energy of the system.

L(q,4) = T(q,q) — V(q),

where 7' is the kinetic energy and V' is the potential energy of the system written in generalized
coordinates.

Definition 2.1 (Lagrange’s equations (Murray et al., 1994; Greenwood, 1997)). The equations
of motion for a mechanical system with generalized coordinates ¢ € R and Lagrangian L are

given by
i oL _ oL ‘
dt aql 8(]1 -

where Y is the external force acting on the i’ generalized coordinate. These are the generalized

i=1,...,m, 2.1)

forces.
If the ' joint is passive the generalized force vanishes, i.e., T; = 0. It is sometimes convenient

to rewrite Eq. 2.1 in matrix form
M(q)g + h(g,q) =T (2.2)

where for an n degree of freedom robot, M (q) € R"*" is the positive definite symmetric mass
matrix, h(q, ¢) € R™*! is a vector summarizing the influence of Coriolis, centrifugal, and gravi-

tational forces, and T € R™*! is a vector containing the generalized forces.

2.1.2 Lagrange’s equations with contact forces

Like many other articulated locomoting mechanisms, our mechanism uses the contact with the

walls to locomote. When the mechanism is in contact with an obstacle these contact forces
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can be easily incorporated into the Lagrange equations by formulating corresponding contact
constraints. These constraints come from the assumption that no sliding occurs at the contact
and therefore no work is done by the contact constraint forces. Note that the constraint itself is
the fact that the velocity of the contact point itself is zero, not the work at that point. The contact

constraints can be written as

Alg)g =0 A(g) € R™™ (2.3)

where the constraint matrix A represents a set of k velocity constraints. In our kind of system,
n is the number of degrees of freedom of the system and k is the number of constraint forces.
When a system having a single unilateral constraint such as our mechanism hitting the wall,
k = 2 which will include normal and tangential contact forces. This constraint matrix can be
derived as A(q) = 82_((1(]) € R**3, where P(q) = (P, P,)" is the point of contact with the walls.
The dynamics of the system can now be written as

d oL OL

—— = —=T; - A"() A 2.4
where \.,; (the Lagrange multipliers) are the contact forces with the obstacle. Eq. 2.4 can be

written in matrix form as

M(q)§+ h(q,q) =T — A" (@) Acat (2.5)
By differentiating 2.3 and solving for ¢ from Eq. 2.5, the Lagrange multipliers are obtained
. _ “1 /i, . _ .
Aeat(:4) = (Alg)M(q) " Ag)") (A(Q)q — Alg)M(q)~"h(q, Q)> : (2.6)

For a more careful derivation of these equations with constraints see the book by Murray et al. (1994).

2.1.3 State space representation

In many cases it is useful to transform the n second order differential equations into 2n first order
differential equations which is also called state space representation. By first defining the state

vector as z = (q, ¢)T, the 2n first order differential equations are written as
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2 q q

z‘ = pu— pumy
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2.1.4 Autonomous system vs. Non-Autonomous Systems
So far, the equations of motion were written as a system of equations
= flz,p), (2.8)

where z = (g, ¢) is the state of the system. The parameters of the mechanism and the environment
are denoted as p. These parameters include the link lengths, masses, and the distance between
walls. A system of ordinary differential equations is autonomous when it does not depend on
time (or another independent variable). In contrast, a system is non-autonomous when it does
depend on time. In 2.8, since the right hand side does not include time it is an autonomous

system. A non-autonomous system is of the form
z2=f(z,t,p); (2,t) e R" xR, (2.9)

A n'"-order time-periodic non-autonomous system with period T (i.e., f(-,t) = f(-,¢t + T)) can
always be converted into an n+1"-order autonomous system of differential equations (Gucken-

heimer and Holmes, 1983; Parker and Chua, 1989)

sz(Z7T7u)7

7=1; (z,7) €R" xS

(2.10)

where 7 is the new state component representing time. The phase space has now been trans-
formed into the manifold R™ x S' (cylinder), where S' = R (mod T') is the periodicity of the
system. Note that for a periodic forcing of the shape A sin(wt), as in our system, another natural

choice of the new state component can be 7 = wt, and therefore 7 = w.
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2.1.5 Nondimensionalizing Differential Equations

We show that with a sinusoidal motor trajectory, and with the correct choice of parameters, the
mechanism climbs stably. In order to reduce the dimension of the parameter space, we use
a method called nondimensionalizing, or normalization. This method described in Appendix A
can reduce the number of parameters by up to the number of fundamental units. In our system the
number of parameters that can be reduced is three: mass, length, time. Instead of using the entire
set of parameters, the idea of nondimensionalizing is to deal with ratios of these parameters.
This will convert a system of differential equations into unitless (dimensionless) parameters.
This method not only reduces the parameter space, but can also give intuitive and physically
meaningful ratios of the parameters. For example, instead of looking at two masses of the system,
the nondimensionalized parameter might be the ratio between the masses, or the ratio between
one mass and the total mass of the system. Appendix A describes in detail the motivation and

work flow of nondimensionalizing differential equations.

2.2 Nonlinear analysis

So far we have described the general formulation of the equations of motion for an articulated
robot such as our climbing mechanism. The rest of this chapter deals with the methods used to
analyze nonlinear dynamical systems. The section begins with an overview of orbital stability
analysis and then describes more accurately how to use the Poincaré map to simplify the analysis
of systems with limit cycles and finally describes a few nonlinear phenomena and the means to

interpret them.

2.2.1 Orbital stability - the Poincaré map

As mentioned previously, our system exhibits periodic motions due to the forced periodic con-

straint (¢(t)). Moreover, the system is a hybrid system, one that cannot be described as a single
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continuous flow but only as a collection of continuous flows with discrete changes during the
transitions. In our system, these discrete changes occur while impacting the walls. Due to these
facts, a useful tool to analyze stability is the Poincaré map (Guckenheimer and Holmes, 1983).
This tool converts the study of the hybrid periodic flow of our mechanism into a nonlinear dis-
crete mapping on a lower dimensional space. By looking at the crossing of the flow with a cross
section one can now analyze this discrete system instead of the more complicated hybrid flow.
Period-1 motions, i.e., climbing motion which returns to its initial state after one period, will
correspond to a single fixed point on the Poincaré section. Period-k motions, i.e., flow that re-
turns to the same state after k& periods, will correspond to £ points on this section. The Poincaré
map defined in this work, maps one state of the climbing robot, just after leaving the wall, to the
state where the robot leaves the next wall. This is done by solving the equations of motion of the
flight, impact, and stance phases numerically.

To find fixed points, we use the multidimensional Newton-Raphson numerical root finding
method. To analyze the orbital stability, the Poincaré map is linearized around these fixed points.
This linearization is the Jacobian at the fixed points. We find both stable and unstable fixed
points. If the eigenvalues of this Jacobian are inside the unit circle then a perturbation from a
limit cycle will converge to the unperturbed state, and this fixed point is said to be stable.

We now turn to more accurate definitions. As in Eq. 2.8, an autonomous differential equation

can be described as

i = f(2), (2.11)

where z € R" is the state of the system and f : R" — R" is a Lipschitz-continuous vector field.
Thus, there exists exactly one solution for every initial condition z(ty) = z,. The solution is
denoted by the trajectory z(t) or by the flow ®;(zg). The flow ®,(z) assigns a trajectory z(t) to
every initial value z.

Definition 2.2 (Periodic Solution, Periodic Orbit). A solution ®;(z) of Eq. 2.11 is a periodic

solution with period length 7" > 0 if &7, 4(z) = P;(20) holds for all times ¢ € R.
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The choice of z is not unique; any point of the periodic solution is a valid starting value for
an autonomous system.
Definition 2.3 (Poincaré map). Consider an n-dimensional system as in 2.8. Let -y be a periodic
orbit of some flow ®; in R™ arising from the nonlinear vector field f(z). Let X C R" be an
n — 1 dimensional cross section. The cross section X need not be planar, however, it must be
transverse to the flow, i.e., all trajectories starting on > flow through it, not parallel to it. Denote
the unique point where ~ intersects X by p. Then the Poincaré map P : U — X is defined in a

neighborhood U C ¥ of p as

where 7 = 7(q) is the time taken for the orbit ®,(q) based at q to first return to 3. If the mapping
has a fixed point z*, then P(z*) = z* (see Figure 2.1). If multiple mapping is required for a state
to return to itself, i.e.,

P*(2*) = 2*,
the system has a period-£ cycle, i.e., after k cycles that state maps back to the initial state. On
the Poincaré section a period-£ cycle will correspond to % points.

There are a few common types of Poincaré maps which differ by the chosen section. The two
typical ones which are used in this analysis are the stroboscopic Poincaré map and the impact
Poincaré map. The former is the more common map which takes the Poincaré section every
equal time interval. The latter, which is commonly used in analyzing hybrid robotic systems,

uses an event such as a leg of a robot hitting the floor as the Poincaré section.

2.2.2 Stability definition

One of the most important and interesting questions asked when analyzing a dynamical system
is whether the system is stable or not. Since our system is periodic, the orbital stability must be
analyzed. As mentioned previously one can convert our system from a continuous or a hybrid

system into a discrete system by using the Poincaré map method. Therefore instead of analyzing
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Figure 2.1: Poincaré map.

the stability of an orbit, the stability of a fixed point on the Poincaré section is analyzed. This
fixed point corresponds to a closed orbit in the full state space. Defining stability on the full state
space of a periodic system is problematic since two identical flows with phase different will not
be considered stable. However, when using the Poincaré method these two solutions will be both
converge to the same point and therefore stable. There are a few different forms of stability.
Definition 2.4 (Stable (Lyapunov Stable) Fixed Point). A fixed point z* of f(z) is called stable
if for any given neighborhood U (z*) there exists another neighborhood V' (2*) C U(z*) such that
any solution starting in V'(2*) remains in U(z*) for all t > 0.

Loosely speaking being Lyapunov stable means stability in the weak sense that trajectories
starting nearby a limit cycle will remain nearby for all time. Asymptotic stability which is defined
next also adds the constraint that at steady-state the flow is attracted back to the original limit
cycle.

Definition 2.5 (Asymptotically Stable Fixed Point). A fixed point z* of f(z) is called asymptot-

ically stable if it is stable and if there is a neighborhood U (z*) such that
2elim |®(t,z) —2"| =0 forallz € U(z")

In order to find if a fixed point of the Poincaré map is asymptotically stable Floquet analysis
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is used. Floquet analysis looks at the eigenvalues of the linearized map around the fixed point to
determine its stability.

Theorem 2.1 (Characteristic (Floquet) Multipliers). Let z* be a fixed point of the Poincaré map
P. The map P is n-dimensional for a non-autonomous systems and n — 1-dimensional for an
autonomous systems. The local behavior of the map near z* is determined by linearizing the map

at z*. The linear map, called the Jacobian Matrix or the monodromy matrix, is

dzkp1 = DP(2")d 2y,

where dzj, and 2.1 are a perturbation from the fixed point at iteration k and k + 1, respectively.
The eigenvalues of the Jacobian DP(z*) are the characteristic multipliers of the periodic solu-
tion. These characteristic multipliers govern the evolution of perturbation dzy around the fixed
point. (Parker and Chua, 1989; Nayfeh and Balachandran, 1995).

o [f all of the characteristic multipliers are within the unit circle, then the corresponding
fixed point is asymptotically stable. Hence, the associated periodic orbit is asymptotically
stable and is an attracting limit cycle. This fixed point is called an attractor.

o [f all of the characteristic multipliers are outside the unit circle, the corresponding fixed
point is unstable. Therefore, the associated periodic orbit is an unstable limit cycle. This
fixed point is called a repellor.

e [f some, but not all, of the characteristic multipliers are outside the unit circle, the corre-
sponding fixed point is a saddle. Hence, the associated periodic orbit is an unstable limit
cycle of the saddle type. See Figure 2.2.

Note, this classification scheme remains valid as long as none of the characteristic multipliers
lies on the unit circle. A fixed point with no characteristic multipliers on the unit circle is called
hyperbolic. The stability of a non-hyperbolic fixed point cannot be determined from the char-
acteristic multipliers alone unless one characteristic multiplier has magnitude greater than one

and another characteristic multiplier has a magnitude less than one, in which case the fixed point
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Figure 2.2: The position in the complex plane of the characteristic multipliers at a hyperbolic
fixed point determines the stability of the fixed point. (a) asymptotically stable (b) unstable (c)

non-stable, saddle type.

is non-stable. To characterize non-hyperbolic fixed points, one must investigate the higher order

nonlinear terms.

Proof. If one looks at the map of a perturbed state z* + dzp; = P(2* + dz;), expanding the

result in a Taylor series about z* and retaining the linear terms, one obtains
2"+ 0zk1 = P(2" 4+ 0z) = P(2%) + DPz.

Therefore a perturbation from the fixed point decays if all the eigenvalues of D P are less than
one. Hence, the system is locally stable around this linearization. The smaller the eigenvalue,
the faster this perturbation decays. See (Nayfeh and Balachandran, 1995) or (Parker and Chua,
1989) for the full proof. ]

2.2.3 Bifurcations of nonlinear systems
Definition 2.6 (Bifurcation). Once again consider an n'"-order system
2= f(z,p)

with a parameter € R. As p changes, the steady-state solution of the system also changes. If

a small change in p causes a steady-state solution to undergo a qualitative change it is called a
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Figure 2.3: Scenarios depicting how the Floquet multipliers leave the unit circle for different
local bifurcations: (a) transcritical, symmetry breaking, and cyclic-fold bifurcations; (b) period
doubling bifurcation; and (c) secondary Hopf or Neimark bifurcation. (Nayfeh and Balachan-

dran, 1995)

bifurcation and the value at which a bifurcation occurs is called a bifurcation value (or point).
Note that typically a small change in i produces small quantitative changes in a steady-state
solution. For instance, perturbing 1 could change the position of a steady-state solution slightly,

and if the steady-state solution is not an equilibrium point, its shape or size could also change.

The bifurcations can be analyzed using the characteristic multipliers defined in Definition 2.1.
Three typical bifurcations related to the characteristic multipliers leaving the unit circle are
shown in Figure 2.3. We will use these analysis method to plot the characteristic multiplier

locus and check for bifurcation while changing a parameter continuously.

2.2.4 Types of dynamic motions

There are three classic types of dynamic motions which are relevant to our climbing mechanism:
e equilibrium (fixed point);
e periodic motion or a limit cycle;

e quasiperiodic motion which contains a finite number of incommensurable frequencies '.

'Frequencies are incommensurable if their ratio cannot be expressed as a ratio of whole numbers.
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These motions are called attractors, because if some form of damping is present the transients
decay and the system is “attracted” to one of the above three states.

The fourth kind of motion is called Chaos, which is associated with a “strange attractor”.
We will not go into details about this kind of motion, however we will try to define it in a
simple manner and later show how to analyze and find chaotic motions. The main engineering
motivation in searching for a chaotic region is to try to avoid these motions.

Definition 2.7 (Chaotic Motion). Chaos is aperiodic long-term behavior in a deterministic sys-
tem that exhibits sensitive dependence on initial conditions

Aperiodic long-term behavior means that the system does not reach a steady state solution of
one of the above attractor solutions: equilibrium, periodic motion or quasiperiodic motion. A
system is deterministic when the later states of the system follow from the earlier ones. In
dynamical systems this implies that the system has no random or noisy inputs or parameters.
Sensitive dependance to initial condition occurs when two very close initial conditions diverge
exponentially from each other. In the next section we will briefly show a few methods to analyze

periodic solutions and search for chaotic regions.

2.2.5 Methods of analyzing nonlinear systems
2.2.5.1 The Poincaré map

The most popular method to analyze periodic, forced systems is the Poincaré map which was
previously discussed. By observing the crossing of the system through the Poincaré section, one
can easily distinguish between different motions.

¢ A k-periodic motion maps to k points on the Poincaré section, i.e., period-1 motion maps

to a single point on the Poincaré section, period-2 motion maps to two points, etc.

® A quasiperiodic motion which contains a finite number of incommensurable frequencies
traces a continuous closed curve on the Poincaré map since it does not converge to a single

point.
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¢ If the Poincaré map does not consist of either a finite set of points or a closed curve, the

motion may be chaotic 2.

2.2.5.2 Lyapunov exponents

One of the important characteristics of chaos is sensitive dependance on initial conditions. The
Lyapunov exponents can reveal if indeed there is an exponential relationship between the flow of
two very close initial conditions. In general, for an n-dimensional dynamical system, there are
n Lyapunov exponents. To check for sensitivity of initial conditions, only the largest Lyapunov
exponents is of interest. The method for finding this largest Lyapunov exponent is very similar
to finding the Lyapunov exponent of a one-dimensional map which is explained next.

Definition 2.8 (Lyapunov Exponents for 1-D maps). Assume P is a Poincaré map of a 1-D
system. Let z and zg + Az be two nearby initial points on the flow, not necessarily in steady

state. After one iteration of a map the points are separated by
Az = P(z0 + Az) — P(z0) =~ AzP'(2)

where P’ = dP/dz. The local Lyapunov exponent A at z is

AZl
A= In|—| ~ In|P’
ol = nlP'(zo)
To obtain the global Lyapunov exponent, an average of the local Lyapunov exponent over many

iterations must be taken

1. A
A= lim —ln]A—Z

Jim (2.12)

This is similar to calculating the eigenvalues of the linearized Poincaré map. In fact, the Lya-
punov exponents for higher dimensional systems can also be calculated as the average moduli of
the eigenvalues
1
Ai = lim — In |m;(T)].
¢ = Jim — In fma(T)
2This only insures that this system does not have an aperiodic behavior but not necessarily sensitivity to initial

conditions.
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where my, msy ... m, are the eigenvalues of DP(z).

The Lyapunov exponents are closely related to the eigenvalues discussed previously and are
calculated by similar means, but there is an important difference. Whereas eigenvalues are usu-
ally calculated at a point in state space, such as a fixed point, Lyapunov exponents are usually
geometrically averaged along the orbit. The Lyapunov exponents are the average rate of contrac-
tion or expansion near the periodic orbit. Knowing how the local Lyapunov exponent varies in
space allows one to identify regions of an attractor with good or poor predictability for small ini-
tial errors. More about numerical calculations of the Lyapunov exponents can be found in (Parker

and Chua, 1989; Sprott, 2003).

2.2.5.3 Spectrum analysis - Fourier analysis

Another important tool in trying to diagnose a bifurcating nonlinear system is the power spectrum
analysis. This method studies the frequency content of a solution of a nonlinear ODE. By first
taking the time series data and analyzing using fast Fourier transforms (FFT), one can find the
dominant frequencies contained in the solution. A period-1 orbit will consist of the fundamental
frequency and higher harmonic frequencies in multiples of the fundamental frequency. After
a period doubling bifurcation occurs another frequency will join the fundamental one. This
frequency will be half the frequency of the fundamental one. After each doubling bifurcation

another frequency, and its corresponding harmonics, will join the spectrum.
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Part 1

Open-Loop Climbing’

3Most parts describing the DSAC are taken from Degani et al. (2010a,c), DTAR from Degani et al. (2010d,b)

and ParkourBot from Degani et al. (2011)
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Chapter 3

DSAC

This chapter explores the DSAC, for Dynamic Single Actuated Climber. We first introduce the
system and model assumptions, then derive the equations of motions. The analysis of the mech-
anism is divided into three sections: local stability, basin of attraction and efficiency calculation.
Three interesting results are reported. First the mechanism is extremely robust and stable, even
while using open-loop control. This is observed in the local stability of the system and is mostly
surprising due to the high robustness of the system manifested in a large basin of attraction.
Period doubling bifurcation is observed in simulation and experiments. Another interesting phe-
nomenon that we show is that non-symmetric “limping” climbing is more efficient and more

stable in some cases.

3.1 Modeling

3.1.1 System description and modeling assumptions

In simulations and experiments DSAC exhibits stable periodic climbing motions. The goal of
our analysis is to produce a model that exhibits behavior similar to that of the experiments and

simulations. The DSAC mechanism is planar and consists of two links; the first is the leg which
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Figure 3.1: Schematics of two link mechanism climbing between two parallel walls.

contacts the wall only at its distal tip. The second link is the main body which is connected
to the leg through an actuated revolute joint (Figure 3.1). The leg has mass m;, moment of
inertia 7, and length [;. Its CoM is located at a distance b; from the contact point with the
wall. The body is assumed to have mass my, moment of inertia /5, and CoM located b, from
the joint connecting it to the leg. The body does not collide with the leg nor with the walls. The
cartesian coordinates (x,y) are chosen at the distal end of the leg, the angle of the leg relative to
the vertical is #, and the angle between the two links is ¢. The motion between the two links is
set to be a sinusoid ¢(t) = Asin(wt), where A and w are the amplitude and angular frequency of
the sinusoid, respectively. For simplicity, the inertial frame is centered between the two parallel
walls. In fact it is possible to only use five parameters (/; + mglf, I, maboly, miby + maly,
and mob,) instead of the full set of seven parameters (my, ms, l1, I, I, b1, and by) used here
(c.f. Dullin (1994)). See Appendix B for full derivation of the equations of motion. To analyze

the behavior of the mechanism, the motion is split into three phases: flight, impact, and stance
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phase. By using the final state of one phase as the initial values of the next phase we can analyze
and simulate the whole climbing motion. Since the environment is symmetric (two parallel
walls), we can include a “flip” of coordinates during impact phase, this will enable the equations

to always represent a robot leaping from the right towards the left wall.

A few hypotheses and assumptions are used throughout to simplify the analysis. We assume
that the impact model is instantaneous and inelastic, where no slipping or rebound occurs. The
external forces during the impact can be represented by impulses, which may result in an instan-
taneous change in the velocities but not in the configuration. Since the actuator has a known
sinusoidal trajectory, during the impact we assume the motor can apply an impulsive torque to
keep itself on track. Moreover, the angular momentum around the contact point is constant hence

the angular velocity of the leg can be calculated.

During the stance phase the leg is in contact with the wall. Due to high friction between the
leg and the wall, no sliding will occur and the contact point is treated as a frictionless pin joint.
We only consider the gait where the distal end of the leg hits the wall. Although not physical,
we assume that during the transition from stance phase back to flight, no slip occurs. From these
assumptions we allow the leg angle and angular velocity to be without limits. In the physical
mechanism in order to hold these assumptions the leg angle and angular velocity will be in the
range of € (0 : 1.2rad), and § € (—2 : 24). We derived and simulated the equations of motion

using Matlab™,

3.1.2 General equations of motion

Since the angle between the two links, ¢, is constrained, it will not be part of the state of the
robot. This forced periodic input turns the equations of motion into a nonautonomous system (as
discussed in Chapter 2, Eq. 2.9)

2= f(2,t,p), 3.1)
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A

where the state of the system z = (g,q) is 6-dimensional, where ¢ = (z,y,0) € R* x S!
and § = (2,9, 0) € R and p € R" is the system’s parameters. These parameters include,
for example, the link lengths and the distance between walls. Such periodic forced system can
then be converted into an autonomous system as shown in Guckenheimer and Holmes (1983) by

increasing the dimension by one.
2= f(z,m), (3.2)

The state of the system z is now (g, §), where ¢ = (x,y,0,7) € R*xS'xS!', 7 = wt (mod 27) €
S', and ¢ = (2,9, 6’) € R3. The addition of 7 comes from the conversion to an autonomous
system.

Writing in Lagrange matrix form, as in Eq. 2.5, the equations of motion are
M(q)g + h(g,q) = T — A () Aear, (3.3)

where M(q) € R3*® and h(q,§) € R3*! are the mass matrix and the nonlinear terms matrix,
respectively. The vector representing the applied forces and torques is T € R3*! and \.,; is
the contact force with the wall. Since ¢ is a constrained motion there is no need to include
input torques (Y = 0). Let A(q) = 81;—((;1) € R?*3 be the constraint matrix during contact,
where P(q) = [P, P,]" is the point of contact with the walls. Since the point of contact P(q)
coincides with our coordinate system, P(q) = [x y|” and A(q) = (}99). This system is
underactuated in the sense that only one actuator exists. This is the motor which connects the leg
to the main body. For a detailed derivation of these equations of motion see Appendix B.

As mentioned before, to analyze the behavior of the mechanism, the motion is split into three
phases: flight, impact, and stance phase (see Figure 3.2). By using the final state of one phase as
the initial values of the next phase we can analyze and simulate the whole climbing motion.

A projection of the phase space portrait, including only 6 and 6 of a climbing gait from one

wall to the other and back to the first, is depicted in Figure 3.3. This motion consists of two

consecutive three-phase motions which will now be derived in more detail.
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Figure 3.2: Three phases of climbing gait.
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Figure 3.3: Projection of phase plot onto the 6, § plane of the nominal climbing motion.
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3.1.2.1 Free flight phase

During free flight, there are no external forces acting on the mechanism other than gravity. There-

fore, A\.;:+ = 0 and the equations of motion are reduced to:

M(q)q + (g, 4) = 0, 3.4)

3.1.2.2 Impact phase

From the impact assumptions in Section 3.1.1 one can find the equation of conservation of angu-
lar momentum around the contact point during the instantaneous time of impact. As described

in (Greenwood, 1997), the total angular momentum with respect to point c is

N
H = Z Lwi + Ty fe X MiFm,, (3.5)

i=1
where N is the number of links, 7, /. is the vector from mass i to the point of contact. 7+, is the
velocity of mass ¢ relative to the inertial frame. I; is the moment of inertia of link 7 and w; is the
angular velocity of link ¢ as depicted in Figure 3.4.

From the previous assumptions we know that during impact, only the velocity and not the
configuration changes, hence the only unknown state variable is 6. From this equation we can
find the new 6" after the collision. This is done by equating the angular momentum before

impact and instantaneously after impact.

0" = f(0,0,57,97,07), (3.6)

where f maps the angular velocity of the leg from pre-impact to post-impact.

Since the environment is symmetric (two parallel walls), we can include a “flip” of coor-
dinates during impact phase, this will enable the equations to always represent a robot leaping
off the right towards the left wall. All of the state coordinates other than the y coordinates will

change sign. Since, by assumption, no sliding is allowed, the linear velocities will vanish after
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Figure 3.4: Finding angular momentum around contact point c.
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impact. Therefore there exists a mapping which describes this whole transition during impact

xt -z
y* Y-
o+ -6~
= 9 (3'7)
T 0
gt 0
é+ _f(07¢7$_7y_76‘_)

where the ~ and T subscripts represent the pre and post impact state variables, respectively.

3.1.2.3 Stance phase

Since we assume that the leg which is in contact with the wall will not slip, the external (contact)

force can be added and the system can be described as

M(q)G + h(g,q) — A" (q)Aear = 0, (3.8)

where Ao = [An, )\t]T are the normal and tangential contact forces between the tip of the leg
and the wall. As described in Eq. 3.3, the constraint matrix A(q) is A(q) = (§%9) . We add
an extra set of equations to find the time when the normal contact force changes sign. This is
the instant when the leg loses contact with the wall and the mechanism transitions into flight
phase. As shown in section 2.1.2, we can apply some simple manipulation to add the Lagrange

multiplier constraint and find the external force equation as a function of the state.

Natla:d) = (Al))M(@) ' A@)") " (Al — A)M(@) g ). B9)

When )\, changes sign, the stance phase terminates and the flight phase begins. Using the final
conditions of the stance phase as the initial conditions of the flight phase, we can continue and
simulate the next three phases. The three phases including the flip during impact phase are shown

in Figure 3.5.

48



We use the method of nondimensionalizing equations of motion to find the nondimensional
parameters of our equations of motion. This method is not well known nor often used in the
robotics community but can be beneficial. The motivation and procedure is given in Appendix A.
The derivation of the DSAC nondimensional equations of motion are presented in Appendix B.
The characteristic length and time for this non-unique set we chosen to be dy,; and %, respec-
tively which results in the set given below. The nondimensionalization reduces the number of

parameters of the system from eleven to eight.

mo bl b2 ll g
M:m_l’ﬁzz77:a’5:d 11’Q:w2d 11’A7
" v (3.10)
_ I o I,
= dgvall<m1 + m2>7 P2 = d?;vau(ml + m2).

These nondimensional parameters provide some valuable information without even observing or

solving the equations of motion.

3.2 Approach to Analysis

3.2.1 A typical climbing motion

Figure 3.3 depicted a full climbing cycle between one wall to the other and back to the first.
Figure 3.6 depicts a typical period-1 phase plot cycle for the new climbing motion after adding

the “flip”, as in Eq. 3.7. This plot is a phase plot of 6 and §. Although this is not the full state

A N Y

Post-Impact Pre-Impact

Stance phase Impact Phase Flight Phase

Figure 3.5: Three phases including flip during impact phase.
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space but only a projection on the 6, 9 plane, this phase plot portrays the important information
of the climbing cycle. In fact, we will later show that these two state variables together with
a variable corresponding to phase are all the information needed to portray the motion of the

mechanism.

Pre-Impact

Stance phase

Post-Impact

Figure 3.6: phase plot of a typical climbing motion with the flipping action of impact phase.

3.2.2 Open-loop stability

This section explains the stability investigation of the climbing mechanism. There are several ap-
proaches to investigate nonlinear systems. One, which for example was taken by McGeer (1990b),
is to linearize the governing equations of motion about an equilibrium state. This might allow us
to explicitly integrate the equations of motion. There are two problems with this approach. The
first is that the solutions are only valid in a small region around the linearized state. This accounts
for the loss of important information and for inaccurate stability models (as shown in Goswami
etal., 1998). The second problem is that in our mechanism, in order to calculate the time of flight,

a transcendental equation must be solved. This forces us to solve the equation numerically. The
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second approach, which is used here, is to preserve the full, nonlinear hybrid equations of the
system. The main disadvantage in this approach is that we must rely on numerical solutions.

Using the definitions of orbital stability from Section 2.2.1, we will explore the regions where
the mechanism is stable. One should note that we are only interested in the orbital stability, i.e.,
the stability related to a closed orbit (or limit cycle). Similar to other locomoting systems, one
state variable is related to the progression of the mechanism. In walking machines this is the
horizontal coordinate, whereas in our system it is the vertical displacement (y). Since our system
locomotes, this variable is not cyclic hence we are not interested in finding its orbital stability.
One might either ignore this variable, as done in most related work, or show that the equations
of motion are invariant to this variable, therefore will not be cyclic in general. The next theorem
will explain why invariance of the displacement variable corresponds to a non-cyclic motion.
Theorem 3.1. Consider an n dimensional system of ODE with state {z1, 2o, ..., zo,}. If the
system is invariant to one of the generalized coordinates, i.e., Z = f(z3, 23, ..., 2op), then

1. The system can be solved by first solving the reduced n — 1 dimensional system C = f(Q),

where ( = (29, 23, . . ., 22,), followed by solving the single ODE %, = f(().
2. The invariant variable z, can never be a non zero-mean periodic on average, i.e., on

average the variable will either increase or decrease.

Proof. The sketch of the proof is straightforward. Since the system is invariant to z;, it is possible
to decouple the system into a reduced n — 1 second order differential equations together with
a single first order differential equations by substituting v = 2;. This process is similar to
reduction of order of a differential equation when a dependent variable is missing (e.g., Boyce
and DiPrima, 2001). Second, after solving the reduced system, numerically in our case, one can
simply integrate v to find z;. The consequence of integrating Z; is that unless z; has a zero mean

z1 will always either increase or decrease, hence will not be cyclic. O]

Theorem 3.1 is significant to our system because our equations of motion are not dependent

on the vertical displacement (y). Physically, since the walls are vertical, placing the robot in a
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different y location should not change the dynamics of the system other than initial condition.
Moreover, since the robot climbs it does not make sense to find the orbital stability in that di-
rection because it is not periodic. Therefore, the entire state space can be decomposed into two
spaces, the y climbing and the rest of the state which can be periodic and stable. For stability
analysis we can use Theorem 3.1 and exclude the y variable. We will only use y when we are

interested in finding how much the robot climbed.

3.2.3 Poincaré map and corresponding Poincaré section

Using Definition 2.3, we can define the Poincaré map from the Poincaré section mapped back to

this section by P

zk1 = P(zp), (3.11)

where P is the map, z; and 2, are states in the reduced spaces on the Poincaré section before
and after the map, respectively. For this system, a convenient Poincaré section is the instant of
release from the wall, i.e., the transition from stance to flight phase. This occurs when the normal
contact force \,, passes through zero from negative to positive. Because during stance phase the
distal part of the leg is touching the wall (z = dy,), no rebound (¢ = 0) or slippage (y = 0)
occurs , we can define a reduced dimensional hyperplane >. as the Poincaré section

Y ={(x,0,&,9,0,7) e R* x S x §!

(3.12)
| T = dwallai = 07y = OuAn(ZvT) = O}

This Poincaré section reduces the dimension of the Poincaré map to three, including only 6, 0, 7.
P:(0,0,7) e S'xR*— (0,0,7) € S' x R?,

If the mechanism reaches the wall during the climbing cycle, then the state z must lie on 3. Other
motions that do not reach the wall cannot be analyzed using this method, however, they are not

of interest since pushing off the wall is needed for stable climbing. We will also note that ¥, the

52



vertical climbing direction, is not included in the definition of the Poincaré map or the Poincaré
section since it is not part of the limit cycle, and we do not want to stabilize it.

Although the Poincaré section reduces the state tremendously (from eight to three), it is
not trivial to calculate the exact transition since the contact forces need to be calculated. In
this thesis we simplify the section even further by assuming that the transition between stance
and flight phases occurs when the acceleration of the swinging leg (¢) changes sign, i.e., when
¢ = —Aw?sin(wt) = 0. This event occurs when 7 = wt (mod 2r) = 27. The new Poincaré

section can therefore be defined as

> ={(z,0,&,3,0,7) e R* x S x S!
(3.13)
| # = dyar, & = 0,5 = 0,7 = 27}

In this Poincaré section all state variables are constrained, except ¢ and 0. Therefore, the

Poincaré map is defined as
P:(0,0) eS'xR— (0,0) e S' x R,

including only 6, 6. We have compared both Poincaré sections (Eq. 3.12 and Eq. 3.13) and
decided to use the lower dimensional one since it is almost identical and is much easier to analyze

and to graphically present.

3.2.4 Local stability

We refer to stability of the climbing mechanism as the local orbital stability, i.e., the stability of
an orbit in phase space around a fixed point on the Poincaré section. In order to find this kind of
stability we must first find the fixed point of the Poincaré map, then linearize the Poincaré map
around the fixed point, and finally find the characteristic multipliers which are the eigenvalues of
this linearized Poincaré map (Jacobian). These characteristic multipliers correspond to the rate of
convergence (or divergence) from the limit cycle. For an orbitally stable cycle, the characteristic

multipliers must lie within the unit circle on the complex plane; i.e., their moduli are strictly
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less than one. This investigation is conducted numerically by first using the Newton-Raphson
method to find the fixed point, and then calculating the Jacobian (linearized Poincaré map) and

its eigenvalues numerically.

3.2.4.1 Fixed point search

The fixed point is the initial state of the mechanism that will map back to itself after one Poincaré

map. Thus, we need to solve the equation
F(2)2:—-P(2)=0. (3.14)

This search is done by fixing the mechanism parameters and using the multidimensional Newton-
Raphson method. The solution is not guaranteed and may not be unique. Note that during the
Newton-Raphson search we need to solve the Poincaré map, i.e., forward simulate the three
phases. During the flight phase, if the mechanism does not reach the wall after a certain integra-
tion time it is concluded that there is no fixed point. In fact, even if it were a fixed point, it will

not be of interest for our climbing analysis because it will likely not be climbing at all.

3.2.4.2 Linearized Poincaré map and eigenvalues

The linearized Poincaré map around the fixed point which was previously found, is the Jacobian

of the map.

T
oP (9P1 (3.15)

VP - [% i
Calculating the elements of the Jacobian is done numerically using either the central difference
or the forward difference derivative approximation. The central difference can be slightly more
accurate but requires more evaluations of the Poincaré map P. Therefore, the simplified forward
difference was chosen, which finds the elements of the Jacobian by perturbing the state by a small

scalar dz in direction ¢, mapping P (21, ..., 2z;+dz, ..., z,), finding the difference between it and

the unperturbed map, and finally taking the ratio to the perturbed amount. The i element will
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therefore be
OP  P(zy,...,zi+dz,...,2,) — P(2)

= 3.16
0z; dz ( )
for our system the Jacobian will be
P(0 +dz,0) —P(6,0) P6,0+dz)—P6,0)]"

dz dz

The mapping P is locally orbitally stable if the Poincaré map of a perturbed state is closer
to the fixed point than the perturbed state. This property can be viewed as the contraction of the
phase space around the limit cycle. This means that the magnitude of the characteristic multi-
pliers (eigenvalues) of P at the fixed point are strictly less than one, as discussed in Chapter 2.
The eigenvalue calculations were done numerically using Matlab™. To analyze and categorize
the bifurcations of the system, we will plot the characteristic multipliers locus and check for

bifurcation while changing a parameter continuously.

3.2.5 Efficiency

In order to find the efficiency of a specific climbing gait, we calculate the total work done by the
motor. To do so, we first need to find the required torque that the motor has to exert in order
to keep the desired sinusoidal. To do so we look at the free body diagram of the main body
(Figure 3.7). The next equations which states the change of angular momentum is equal to the

sum of torques at the hinge enables us to extract the torque applied by the motor.
Hio=%My (3.18)

where O is the location of the hinge, SM /0 1s the sum of torques applied on the body, and H /0 18
the rate of change of the angular momentum about the hinge. More explicitly, the rate of change

of the angular momentum and the sum of torques are:

I’_j/o = mQFGQ/O X 6G2/W + ég[z/;‘ (3.19)
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Figure 3.7: Free body diagram of main body.
EM/o =TGy/0 X (—mag)j + Tk, (3.20)

where 7, /0 is the vector from the hinge to the CoM of the main body, a, w is the acceleration
of the main body relative to the inertial frame, and j, k are the y and z directions, respectively.
Inserting Eqgs. 4.2,4.3 into Eq. 3.18 we can find 7:

~

T = MaTgy/0 X dayyw + O Ik — TGy/0 X (—mag)J. (3.21)

This process of finding the torque is in essence the inverse dynamics solution of the system. By
first constraining the system to move in a sinusoid, we solve the equations of motion to find
the state of the bodies and finally find the torque required to achieve these accelerations. The
instantaneous power is 7 - ¢, where ng is the relative angular velocity of the two links, i.e., in our
case ¢ = Aw cos(wt). Finally, the total work is
T _ T
W = / T - ¢dt = / T Aw cos(wt) dt (3.22)
0 0

The efficiency of the system, 7, is calculated as n = %, where AF is the change of energy

during one Poincaré map, and IV is the work calculated using Eq. 3.22.
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3.2.6 Basin-of-attraction

Section 3.2.4 discusses the stability analysis of the climbing mechanism. Specifically, the local
orbital stability was investigated by first finding the fixed point, then linearizing around this
point and lastly looking for the eigenvalues which correspond to the rate of convergence (or
divergence) from the limit cycle. This stability criterion is only applicable locally around the
fixed point. This section will approximate the basin-of-attraction of the attractors. That is, what

set of initial conditions will converge to one of the fixed points.

This investigation can be done by discretizing the state space and forward simulating these
initial conditions until they converge on an attractor. This method is timely and computationally
consuming. Alternatively, a different technique called cell mapping (or cell to cell mapping) can
give a relatively good estimate of regions of attractions in the state space. The cell mapping tech-
nique, described in full in Hsu (1997), assumes that the topological structure of the flow changes
continuously, hence neighboring points behave in a similar manner. Using this assumption, the
phase space is discretized into a large number of small cells and the entire cell is represented by
its center. One Poincaré map is numerically calculated once for the center of these cells and the
information is recorded. Cells mapped outside of the discretized area are marked as mapped to a
“sink cell”. Sink cells are also mapped back to themselves. All the dynamic information, up to
the precision of the grid division, is now contained in these simple pointers. It is now possible to

iterate these pointers to find periodic cycles.

Instead of calculating the complicated Poincaré map from each initial condition until con-
vergence, which can be about 10,000 cycles, this method only computes the Poincaré map once
for each cell. The main disadvantage is that depending on the resolution of the discretization,
this method can falsely classify periodicity, though, it usually provides a good idea of where the
relevant regions of attractions are. We have implemented a few modifications for this methods,
including changing the number of Poincaré maps that are calculated. When approximately 10

Poincaré maps are initially calculated for each of the cells, the resulting basin of attraction is
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much more accurate and clears most, if not all, of the falsely classified attractors. Of course this
modification will not be able to classify the difference between different lower order periods if

two stable attractors coexist.
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3.3 Analysis Results

This section will present a few interesting phenomena which occur in specific mechanism param-
eters. We first show in simulation that stable, open-loop climbing motion do exist. Moreover,
these motions have a relatively large basin of attraction. Period doubling occurs when controls
or mechanism’s parameters are varied, for example, while varying the sinusoid frequency (w) or
leg lengths ratio (7). Interestingly, in some cases the non-symmetric period-2 are more stable,
more efficient and even better climbers than the symmetric period-1 motions.

The results shown here are for the mechanism and environment parameters given in Table 3.1.
Notice that the effective gravity is a tenth of the normal gravity. This will later help us in the

experimental section to obtain interesting climbing phenomena using slower motor speeds.

3.3.1 Local orbital stability - bifurcations

This section will use the process described above to first explore the orbital stability charac-
teristics of a typical DSAC mechanism. In order to more easily and quickly find the mecha-
nism parameters and control inputs where the interesting bifurcations occur, we plot the char-
acteristic multipliers locus while varying one of the parameters. As discussed in Section 2.2.5
and 3.2.4, the different locations where the eigenvalues (characteristic multipliers) of the lin-
earized Poincaré map cross the unit circle implies different bifurcations. One major advantage
of using this characteristic multipliers locus method over forward simulating and plotting the bi-
furcation diagram is that with the latter method it is important to keep the step size of the varied
parameter small while in the former it is not as sensitive to step size. Also, with the characteristic

multipliers locus it is easier to distinguish between different types of bifurcations.

3.3.1.1 Varying angular frequency inputs (w) for different leg inertia (/;)

Figure 3.8 and Figure 3.9 depicts the characteristic multipliers locus and bifurcation plots while

varying w (angular frequency input) for three different leg inertia (/;). As can be seen for rela-
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Table 3.1: DSAC parameters for results section.

Dimensional Parameters

Parameter Description Value
my leg mass 0.3 kg
Mo body mass 0.7 kg

[y leg length 0.075 m
b1 CoM of leg 0.075 m
by CoM of body 0.06 mf
I leg inertia 1-107% kg m?f
I, body inertia 0 kg m?
dwall half wall width 0.045 m
g gravitational acceleration 0.9807
w sinusoid frequency 15 %ﬁ
Nondimensional Parameters
U Mass ratio 2 23
I3 CoM location of leg ll’—ll 1
vy Link length ratio Z—f 0.81
4] Leg to wall gap ratio ﬁ 1%
01 Nondimensional inertia m 0.0049
P2 Nondimensional inertia m 0
Nondimensional gravity #Wa“ 3.21317
Amplitude 0.81

Parameters marked with T are varied in the current analysis
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tively high leg inertia [; = 11072 (Figure 3.8(a)), the period-1 characteristic multiplier exits the
unit circle at —1 and a period-2 (red dot) appears. This indicates a period doubling bifurcation.
As we continue to vary w the period-2 characteristic multiplier exit the unit circle as complex
conjugate, suggesting that a secondary Hopf bifurcation which results in a quasiperiodic solution.
As we even further vary w a period-10 appears. Figure 3.8(b) depicts a characteristic multipli-
ers locus plot for a smaller leg inertia, I; = 3.3 - 10~%, where another period doubling occurs
from period-2 to period-4. Once again a secondary Hopf bifurcation occurs, this time after the
period-4. Figure 3.8(c) depicts a characteristic multipliers locus plot for an even smaller leg in-
ertia, [; = 2 - 10~%, where a third period doubling occurs from period-4 to period-8. The period
doubling route continues until the numerical accuracy is not adequate to further distinguish these

bifurcations.

3.3.1.2 Varying CoM location () for different leg inertia (/;)

Figure 3.10 and Figure 3.11 depicts the characteristic multipliers locus and bifurcation plots
while varying v (CoM location) for three different leg inertia (/;). As can be seen for relatively
high leg inertia ; = 1 - 1073 (Figure 3.10(a)), the period-1 characteristic multiplier exits the
unit circle at —1 and a period-2 (red dot) appears. This indicates a period doubling bifurcation.
The stable period-1 characteristic multiplier then reenters the unit circle. Figure 3.10(b) depicts a
characteristic multipliers locus plot for I; = 3-10~*, where another period doubling occurs from
period-2 to period-4, however before the period-4 continues to bifurcate the period-2 and then
period-1 cycles becomes stable again. Figure 3.10(c) depicts a characteristic multipliers locus
plot for an even smaller leg inertia, I; = 1 - 10~%, where a third period doubling occurs from
period-4 to period-8. Similar to the graphs shown earlier for change in w (Figure 3.9), the period
doubling route continues to what seems like a chaotic-like solution. We will further investigate
this period doubling later in this chapter. As can be seen, the larger the leg inertia is, the less the

system is prune to period doubling and will stay at lower periods.
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(@I, =1-10"3 ) I, =3.3-107% (© I, =2-10"4
Figure 3.8: characteristic multipliers locus plots while varying w for three different leg iner-
tia (/;). Different colors represent different solution. Blue - period-1, Red - period-2, Green
- period-4 and Cyan - period-10. As can be seen for relatively high leg inertia I; = 1 - 1073
(3.8(a)), the period-1 characteristic multiplier (blue dot) exit from -1 and a period-2 character-
istic multipliers (red dots) form. The period-2 characteristic multiplier then exit the unit circle
as complex conjugate representing a quasiperiodic solution. Finally a period-10 characteristic
multiplier enters the unit circle. Figure 3.8(b) depicts a characteristic multipliers locus plot for
a lower leg inertia (/; = 3.3 - 10~%) where another period doubling occurs from period-2 to
period-4, however before the period-4 continues to bifurcate the period-4 solution bifurcates into
a quasiperiodic solution. Figure 3.8(c) depicts a characteristic multipliers locus plot for an even

smaller leg inertia (I; = 2 - 10~%) where the period doubling route continues.
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Figure 3.9: Bifurcation plots while varying w for three different leg inertia (/;). Corresponding

to Figure 3.8, for relatively high leg inertia I; = 1 - 1073 (3.9(a)), the period-1 bifurcates into

a period-2 then into a quasiperiodic solution and finally into a period-10 solution. Figure 3.8(b)

depicts the bifurcation plot for I; = 3.3 - 1074, where another period doubling occurs from

period-2 to period-4 and then to the quasiperiodic solution. Figure 3.8(c) depicts a bifurcation

plot for an even smaller leg inertia (I; = 2 - 10~*) where a third period doubling occurs from

period-4 to period-8 and continues into a period doubling bifurcation cascade.
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Figure 3.10: characteristic multipliers locus plots while varying v (CoM location) for three differ-
ent leg inertia (/7). Different colors represent different solution. Blue - period-1, Red - period-2,
and Green - period-4. As can be seen for relatively high leg inertia I; = 1- 1073 (a) the period-1
characteristic multiplier exits the unit circle at —1 and a period-2 (red dot) appears. This indicates
a period doubling bifurcation. (b) Depicts a characteristic multipliers locus plot for I; = 3-1074,
where another period doubling occurs from period-2 to period-4, however before the period-4
continues to bifurcate the period-2 cycle becomes stable again. (c) Depicts a characteristic mul-
tipliers locus plot for an even smaller leg inertia, /; = 1 - 10~%, where a third period doubling

occurs from period-4 to period-8.
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Figure 3.11: Bifurcation plots while varying v (CoM location) for three different leg inertia
(I,). Corresponding to Figure 3.10, for relatively high leg inertia I; = 1 - 1073 (a), the period-1
bifurcates into a period-2 and then back into a period-1. (b) Depicts the bifurcation plot for I, =
3 - 1074, where another period doubling occurs from period-2 to period-4, however before the
period-4 continues to bifurcate the period-2 cycle becomes stable again. (c) Depicts a bifurcation
plot for an even smaller leg inertia, I; = 1 - 10~%, where a third period doubling occurs from
period-4 to period-8 and continues into a period doubling bifurcation cascade. No solution was

found in the blank area in the middle.
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3.3.1.3 Power spectrum analysis

We use the power spectrum analysis tool to further analyze the bifurcation plots from Figure 3.9
and Figure 3.11. The power spectrum figures were plotted using Welch’s power spectral density
method and a Hamming window (see Matlab™). Figure 3.12 samples four input frequencies
from Figure 3.9(a) and plots the phase plot together with the Poincaré point marked with red *x’
and the power spectral density (PSD) plot. In Figure 3.12(first and second rows) the period dou-
bling from period-1 (w = 10%1) to period-2 (w = 15%1) is evident by noticing that an additional
frequency with half of the fundamental one was added to the spectrum on the second row. Notice
that multiples of the fundamental frequency exists as harmonics. In Figure 3.12(third and fourth

rows), we can see two interesting phenomena that can be further explained in the closeup figures

rad
s

of Figure 3.12(c). In the left closeup corresponding to the region close to w = 22==, we can see
that the points on the Poincaré surface trace a curve, corresponding to quasiperiodic motion. In
the right closeup, corresponding to the region close to w = 25%1, one of the two regions of five
points on the Poincaré section are shown, corresponding to a period-10 motion.

Similar to the previous power spectral analysis, Figure 3.13 is used to further investigate
the bifurcations of Figure 3.11(c). This plot depicts the phase plot together with the Poincaré
point marked with red ’x’ points on the Poincaré section (3.13(a)) and the PSD plots (3.13(b))
for different leg length ratio v (with largest v on top). For the period-1 motion (top of plot,
~v=1.1) only the fundamental frequency (and its harmonics) appears on the PSD. Note that the
fundamental frequency is normalized. On the corresponding Poincaré section only one point
appears. On the second row (y=1), an additional frequency appears. This frequency which is
half of the fundamental one, corresponds to the first period doubling bifurcation. Once again,
on the Poincaré section, two points appear. The bifurcations continue with period-4 (v=0.93)
and period-8 (7=0.915) on the next rows. The bottom row (v=0.89) begins to show evidence

of the chaotic region. Figure 3.13(c) shows closeups of the Poincaré plots for v=0.89 revealing

stretching and folding structure characteristic to chaotic-like strange attractor.
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Figure 3.12: Varying w. (a) Phase plot (Poincaré points marked with red ’x’), (b) Power spec-
trum. Each row represents a different input frequency: w = 10%, w = 15%4, w = 2224
w = 25%. The change in number of points on the Poincaré plots (marked with x) together with
the (nondimensional) frequency in the power spectrum which is half of the fundamental one, re-
veal a period doubling bifurcation from w = 1024 to w = 154, w = 22" and w = 25" reveal
a quasi-periodic verified by the closed curve on the Poincaré section in the closeup in (c)(left).
The closeup of Poincaré plot of w = 25%1 reveals a period-10 solution (the closeups are on one

of the two clusters).
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Figure 3.13: Varying ~. (a) Phase plot (Poincaré points marked with red "x’), (b) Power spec-
trum. Each row represents a different CoM location ratio (). From top to bottom: v=1.1, y=1,
v=0.93, v=0.915, v=0.89. The Poincaré plots and the PSD reveal period doubling bifurcation.
(c) Closeups of Poincaré plots for y=0.89 revealing stretching and folding structure characteristic

to chaotic-like strange attractor.
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3.3.1.4 Lyapunov exponents

As mentioned in Chapter 2, a useful tool for analyzing nonlinear systems, specifically bifur-
cations and chaotic regions, is the Lyapunov exponents. Lyapunov exponents give the average
sensitivity of initial conditions along an orbit. The region around w = 23% in the bifurcation
plot in Figure 3.8(a) is suspicious as either being quasiperiodic or chaotic. Using the Poincaré
map and spectral density in Figures 3.12, this region is identified as being a quasiperiodic and
not chaotic. To verify this, we plot the largest Lyapunov exponent and examine whether there is
a high sensitivity to initial condition in this region, corresponding to chaos. A plot of the largest
Lyapunov exponent of the same parameters as depicted in Figure 3.8(a) is shown in Figure 3.14.
We can then assume that this suspicious region is not chaotic but quasiperiodic as was assumed
by looking at the Poincaré surface.

In a similar manner we verify that the region around w = 15%]l in Figure 3.8(c) has chaotic
structure. Once again we plot the maximum Lyapunov exponent while varying w to obtain
Figure 3.15. It can be clearly sees that bifurcations occur when the Lyapunov exponent grazes
zero, but more importunately, the region 14 < w < 15 is indeed sensitive to initial conditions

(positive Lyapunov exponent). This is a strong numerical evidence of chaos at this region.
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Figure 3.14: Largest Lyapunov exponents plot while varying w for leg inertia I; = 1-1073. The
region where the Lyapunov exponents graze zero indicate bifurcation or quasiperiodic motion.
Since the Lyapunov exponents are not positive they are not highly sensitive to initial conditions

and do not infer chaotic region.
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Figure 3.15: Largest Lyapunov exponents plot while varying w for leg inertia [; = 2 - 10~*. The
rightmost area where the Lyapunov exponents are positive infers sensitivity to initial conditions

and a strong numerical evidence of chaos.
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3.3.2 Efficiency

Using the efficiency calculation from obtained in Section 3.2.5 we plot Figure 3.16 showing the
approximated efficiency while varying w ((a)) and varying - ((b)) using the same parameters as

in the previous results Figure 3.9(c) and Figure 3.11(b).
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Figure 3.16: Efficiency calculation with change of input frequency w for parameters as in Fig-

ure 3.9(b) ((a)), and CoM location ~ for parameters as in Figure 3.11(b) ((b)).
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(a) w= 10% (b) w= 15%

Figure 3.17: Basins of attractions using the cell mapping technique of two different input fre-
quencies. Small dots representing the basin of attraction. Large dots represents attractor: (a)

period-1 attractor, and (b) period-2 attractor.

3.3.3 Basin-of-attraction

Figure 3.17 shows two typical basins of attractions sampled from the period doubling cascade
(Figure 3.9(a)) at two different input frequencies (w = 10®, and w = 15™4). Figure 3.18
shows the basins of attractions sampled from the period doubling cascade (Figure 3.11(c)) at
two different CoM locations (v = 1.1, and v = 1). The basin of attraction calculations were
done using the modified simple cell mapping method described in Section 3.2.6 using a 30 x 30
grid. As mentioned earlier these basin of attraction results assume that the range of 6 and 0 is
not constrained, however, due to slippage, the actual mechanism’s range is # € (0 : 1.2rad), and
0 € (—2: 2%1). Within this range the basin of attraction spans most, if not all the range in all

four of these examples. These results demonstrate the robustness of this mechanism.

Approximation the basins of attraction is computationally intensive. A different method
which approximates the stability is the disturbance rejection (Hobbelen and Wisse, 2007). Initial

analysis using this method was used and has shown a relatively good correlation to the basin

72



(@y=11 b y=1

Figure 3.18: Basins of attractions using the cell mapping technique of two different CoM loca-
tions (7). Small dots representing the basin of attraction. Large dots represents attractor: (a)

period-1 attractor, and (b) period-2 attractor.

of attraction approximation. As future work, we will further use different and more efficient

methods to approximate the stability.

3.3.4 Climbing rates

A practical measure of the ability to climb is to measure how far a mechanism climbs during each
leap. This corresponds to one Poincaré map. However since asymmetric climbing occurs after
the bifurcation points, a better measure might be the average climbing rate, i.e., Ay = 2\721 %,
where N is the order of the period and Ay is the vertical distance of leap k. Figure 3.19 shows
this average leap while varying w ((a)) and varying 7 ((b)) using the same parameters as in the
previous results Figure 3.9(c) and Figure 3.11(b). While varying w a continuous increase in
climbing rate is shown as the input frequency is increased. More interestingly while varying

7, a noticeable increase in climbing rate occurs after the bifurcation from period-1 to period-2

(v = 1.07. Apparently, after the period-2 bifurcation, the map initiating at large 6 angle climbs
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Figure 3.19: Averaged climbing rate with (a) change of input frequency (w) and (b) CoM location

-

significantly more than the period-1 map. Note that period-2 means a leap from one wall with a

small 6 angle followed by a leap with a large 6 angle.

3.3.5 Numerical accuracy

For our numerical investigation we use Matlab™. For the numerical integration of the equations
of motion we use ODE45 with an event-driven scheme to detect wall impact using tolerances
of 1-107". A multi-dimensional Newton-Raphson algorithm is used to find fixed points of
the Poincaré map. The Jacobian of the linearized Poincaré map is calculated numerically using
the central difference method with perturbation of size 1 - 10~%. In order to decrease numerical
errors in bifurcation plots we first make sure that the transient dynamics have decayed by forward
simulating a few hundred Poincaré maps. In order choose an adequate integration step size, we
have verified that the linear natural frequencies of the system are smaller than the lowest distinct

value in the forced vibration power spectra.
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3.3.6 Discussion: is limping better?

Figure 3.20 shows the maximum eigenvalue (characteristic multiplier), efficiency approxima-
tion, and climbing rate of the DSAC mechanism with same parameters of the ones shown in
Figure 3.9(c) and Figure 3.11(b). The plots on the left of Figure 3.20 are for varying w with leg
inertia of 2- 10~% kg m2. The plots on the right are for varying v with leg inertia of 3-10~* kg m?.
Light gray shade represent period-2 and darker shade represents period-4 gaits. As can be seen
in the plots, the non-symmetric period-2 and period-4 have smaller magnitude eigenvalues cor-
responding to higher local stability!, more efficient and higher climbing rates. In experiments
shown in the next section, we were not able to recreate this phenomenon, most likely due to

slippage at high angles at impact of the “limping” gaits.

'In fact, smaller eigenvalues suggest faster convergence from a perturbation back to the limit cycle
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Figure 3.20: Is limping (period-2) better? Light gray shade marks regions of period-2 while
darker shade marks period-4 regions. As can be seen in the plots, the non-symmetric period-2

and period-4 have lower Lyapunov exponent, more efficient and higher climbing rates.
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Figure 3.21: Air-table and tracking system mounted above.

3.4 DSAC Experiments

3.4.1 Experimental setup

The experimental setup consists of an air table which reduces the out-of-plane motions. The
air table also allows to lower the effective gravity by inclining the table. As discussed earlier,
we use a tenth of the normal gravitational acceleration. In order and track the mechanism, the
Optitrack optical tracking system by (NaturalPoint™, 2009) is used. This system tracks passive
IR markers at rates of 100[Hz]. Since only 2-D motions are needed to be tracked, we can use a

single camera mounted normal to the surface of the air-table (see Figure 3.21).

Our current DSAC prototype design, shown in Figure 3.22, consists of a disk which increases
the surface area between the mechanism and the air-table. On top of the disk the body mass is

connected. On this same disk, a servo motor is connected to a light weight leg. An Arduino
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Figure 3.22: Current mechanism design.

microcontroller is in charge of the low level control of the leg. By using time interrupts, the mi-
crocontroller sends angle commands at exact timed events. This is used to produce a sinusoidal
motion of the leg. The next section shows the verification of the sinusoid leg angle. A wireless
connection is established through an XBEE wireless module between the microcontroller and
the central PC. The PC is used to log data from the tracking system and send new control com-
mands to the Arduino. In the experiments in this chapter the controls remain constant during the
entire experiment. The duration of communication from the PC to the microcontroller (with a
confirmation back to the PC) is about 50ms.

We show two different experiments for two different parameter sets. The approximated di-
mensional and nondimensional parameters for both experiments are given in Table 3.2. The first
experiment, in section 3.4.3 describes a symmetric period-1 experiment. Section 3.4.4 describes
a period-2 climbing gait with a different leg leg ratio (y). We will also show that these results

correlate well to simulation and to the period doubling results of section 3.3.
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Table 3.2: Approximated DSAC parameters for experiment section

Dimensional Parameters

Parameter Description Value in period-1 exp. | Value in period-2 exp.
my leg mass 0.09 kg identical
mo body mass 0.3 kg identical

[y leg length 0.121 m 0.135m
by CoM of leg 0.115m 0.13m
bo CoM of body 0.1m identical
I leg inertia 2.5 1073 kg m? identical
I body inertia 1-10~®kgm? identical
Awall half wall width 0.08 m identical
g gravitational acceleration 0.9807 3 identical
w sinusoid frequency 17.3 16.5 ™
Nondimensional Parameters
I Mass ratio 2 35 identical
B CoM Iocation of leg % 0.95 0.963
v link length ratio 32 0.869 0.769
) leg to wall gap ratio ﬁ 1.51 1.687
p1 nondimens. inertia m 1.002 identical
02 nondimens. inertia m 4-10°¢ identical
Q nondimens. gravity 75— 4.94 4.712
A sinusoid amplitude 0.28 rad 0.27 rad
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3.4.2 Verifying ¢ angle assumption

In order to constrain the angle between the two links (¢) as a sinusoid, the microcontroller forces
the servo to reach the maximum amplitude. Using time-based interrupts, the microcontroller
then forces the servo to change direction and reach the minimum amplitude. The time between
interrupts induces the frequency of the sinusoid. The method in theory should force a square
wave, however, the motor dynamics causes a wave very close to a sinusoid. The method only
works for a bounded region of A and w, since at high w and/or high amplitude, ¢ will not
reach the prescribed angle and will cause a non symmetric sinusoid. Figure 3.23 shows the
validation experiments preformed to verify the sinusoid assumption on ¢. The experiments were
performed by sending the microcontroller different A,w inputs, and logging the actual ¢ angle
outcome. These experiments were not performed during climbing motion, but on a flat terrain
without contact the walls. In order to validate the sinusoid, a mean square curve fitting method is
used together with validating that the variance of the peaks is low. White blocks in Figure 3.23
represent feasible sinusoids, and black blocks represent non-feasible parameters. These areas
are the outcome of the servo not being fast enough to reach the specified sinusoid parameters.
As example, three valid sinusoids are shown on the left and three non-valid sinusoids, where the
servo did not reach the desired amplitude, are shown on the right. These non-valid sinusoids are
the result of large amplitude to frequency ratio causing the motor to be non-symmetric. We use
this discretized controls space when choosing sinusoid parameters for the experiments. As will
be seen in the experiments in the following sections, even while impacting the walls, the ¢ angle

assumption stays relatively correct, other than small perturbations during impacts.

80



A=036,w=1472 A=085,0=1473 [ —— Expermentaldata
04 — Fitted: 0.36c0s(14.721)| 08, Fitted: 0.55c0s(14.73t)
A4
B A lrad)
£ \W\oﬂ 0.29 0.31 0.33 0.35 0.37 0.39 0.41 0.43 0.45 0.47 0.49 0.51 0.53 0.55
)
: 145 T~
14.7 g
2 14.9 :
15.1
15.3
n=035.0m 1615 | —— Exvormentidta Aeoswsiais Copermenial daa
04 Fitted: 0.35c05(16.16t) 08 ——— Fitted: 0.5c05(16.161)
15.5
15.7
< 15.9
E —]
16.1 %
16.3
1()5 0 05 1 15 2 25 3 35 4
It
16.7
16.9
0s Ames e | e ey 17.1 0 Aot | etz
03
7.3 L % 04
02 / 02|
7.5 | ‘
o

9lrad]
olrad)

1
.

o 05 1 15 3 35 4

2 25
tis]

Figure 3.23: Verifying ¢ angle assumption. The plot shows a discretized controls space of dif-
ferent amplitudes (A) and frequencies (w). White blocks represent feasible sinusoids where the
parameters indeed formed a sinusoid. Black blocks represent non-feasible parameters. Three

valid sinusoid plots are shown on the left and three non-valid sinusoid plots on the right.
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3.4.3 Proof-of-concept experiments - Period-1

The following two sections consist of two experiments showing a bifurcation from period-1 to
period-2 while varying the leg length ratio v as was shown in experiments in Section 3.3.1.2.
Figure 3.24 shows a sequence of images of the current design for A = 0.28rad, w = <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>